Maximum spacing estimation of univariate distributions
msedist.Rd
Fit of univariate distribution by maximizing (log) spacings for non censored data.
Usage
msedist(data, distr, phidiv="KL", power.phidiv=NULL, start = NULL, fix.arg = NULL,
optim.method = "default", lower = -Inf, upper = Inf, custom.optim = NULL,
weights=NULL, silent = TRUE, gradient = NULL, checkstartfix=FALSE, calcvcov=FALSE, ...)
Arguments
- data
A numeric vector for non censored data.
- distr
A character string
"name"
naming a distribution for which the corresponding quantile functionqname
and the corresponding density distributiondname
must be classically defined.- phidiv
A character string coding for the name of the phi-divergence used :
"KL"
for Kullback-Leibler information (corresponds to classic maximum spacing estimation),"J"
for Jeffreys' divergence,"R"
for Renyi's divergence,"H"
for Hellinger distance,"V"
for Vajda's measure of information, see details.- power.phidiv
If relevant, a numeric for the power used in some phi-divergence : should be
NULL
whenphidiv="KL"
orphidiv="J"
, should be positive and different from 1 whenphidiv="R"
, should be greater or equal to 1 whenphidiv="H"
orphidiv="V"
, see details.- start
A named list giving the initial values of parameters of the named distribution or a function of data computing initial values and returning a named list. This argument may be omitted (default) for some distributions for which reasonable starting values are computed (see the 'details' section of
mledist
).- fix.arg
An optional named list giving the values of fixed parameters of the named distribution or a function of data computing (fixed) parameter values and returning a named list. Parameters with fixed value are thus NOT estimated.
- optim.method
"default"
or optimization method to pass tooptim
.- lower
Left bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- upper
Right bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- custom.optim
a function carrying the optimization.
- weights
an optional vector of weights to be used in the fitting process. Should be
NULL
or a numeric vector with strictly positive integers (typically the number of occurences of each observation). If non-NULL
, weighted MSE is used, otherwise ordinary MSE.- silent
A logical to remove or show warnings when bootstraping.
- gradient
A function to return the gradient of the gof distance for the
"BFGS"
,"CG"
and"L-BFGS-B"
methods. If it isNULL
, a finite-difference approximation will be used.- checkstartfix
A logical to test starting and fixed values. Do not change it.
- calcvcov
A logical indicating if (asymptotic) covariance matrix is required. (currently ignored)
- ...
further arguments passed to the
optim
,constrOptim
orcustom.optim
function.
Details
The msedist
function numerically maximizes a phi-divergence function of spacings,
where spacings are the differences of the cumulative distribution function evaluated at
the sorted dataset.
The classical maximum spacing estimation (MSE) was introduced by Cheng and Amin (1986)
and Ranneby (1984) independently where the phi-diverence is the logarithm,
see Anatolyev and Kosenok (2005) for a link between MSE and maximum likelihood estimation.
MSE was generalized by Ranneby and Ekstrom (1997) by allowing different phi-divergence function. Generalized MSE maximizes $$ S_n(\theta)=\frac{1}{n+1}\sum_{i=1}^{n+1} \phi\left(F(x_{(i)}; \theta)-F(x_{(i-1)}; \theta) \right), $$ where \(F(;\theta)\) is the parametric distribution function to be fitted, \(\phi\) is the phi-divergence function, \(x_{(1)}<\dots<x_{(n)}\) is the sorted sample, \(x_{(0)}=-\infty\) and \(x_{(n+1)}=+\infty\). The possible phi-divergence function is
Kullback-Leibler information (when
phidiv="KL"
and corresponds to classical MSE) $$\phi(x)=\log(x)$$Jeffreys' divergence (when
phidiv="J"
) $$\phi(x)=(1-x)\log(x)$$Renyi's divergence (when
phidiv="R"
andpower.phidiv=alpha
) $$\phi(x)=x^\alpha\times\textrm{sign}(1-\alpha) \textrm{ with } \alpha>0, \alpha\neq 1 $$Hellinger distance (when
phidiv="H"
andpower.phidiv=p
) $$\phi(x)=-|1-x^{1/p}|^p \textrm{ with } p\ge 1 $$Vajda's measure of information (when
phidiv="V"
andpower.phidiv=beta
) $$\phi(x)=-|1-x|^\beta \textrm{ with } \beta\ge 1 $$
The optimization process is the same as mledist
, see the 'details' section
of that function.
This function is not intended to be called directly but is internally called in
fitdist
and bootdist
.
This function is intended to be used only with non-censored data.
NB: if your data values are particularly small or large, a scaling may be needed
before the optimization process, see mledist
's examples.
Value
msedist
returns a list with following components,
- estimate
the parameter estimates.
- convergence
an integer code for the convergence of
optim
defined as below or defined by the user in the user-supplied optimization function.0
indicates successful convergence.1
indicates that the iteration limit ofoptim
has been reached.10
indicates degeneracy of the Nealder-Mead simplex.100
indicates thatoptim
encountered an internal error.- value
the minimal value reached for the criterion to minimize.
- hessian
a symmetric matrix computed by
optim
as an estimate of the Hessian at the solution found or computed in the user-supplied optimization function.- optim.function
the name of the optimization function used for maximum likelihood.
- optim.method
when
optim
is used, the name of the algorithm used, the fieldmethod
of thecustom.optim
function otherwise.- fix.arg
the named list giving the values of parameters of the named distribution that must kept fixed rather than estimated by maximum likelihood or
NULL
if there are no such parameters.- fix.arg.fun
the function used to set the value of
fix.arg
orNULL
.- weights
the vector of weigths used in the estimation process or
NULL
.- counts
A two-element integer vector giving the number of calls to the log-likelihood function and its gradient respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to log-likelihood function to compute a finite-difference approximation to the gradient.
counts
is returned byoptim
or the user-supplied function or set toNULL
.- optim.message
A character string giving any additional information returned by the optimizer, or
NULL
. To understand exactly the message, see the source code.- loglik
the log-likelihood value.
- phidiv
The character string coding for the name of the phi-divergence used either
"KL"
,"J"
,"R"
,"H"
or"V"
.- power.phidiv
Either
NULL
or a numeric for the power used in the phi-divergence.
References
Anatolyev, S., and Kosenok, G. (2005). An alternative to maximum likelihood based on spacings. Econometric Theory, 21(2), 472-476, doi:10.1017/S0266466605050255 .
Cheng, R.C.H. and N.A.K. Amin (1983) Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society Series B 45, 394-403, doi:10.1111/j.2517-6161.1983.tb01268.x .
Ranneby, B. (1984) The maximum spacing method: An estimation method related to the maximum likelihood method. Scandinavian Journal of Statistics 11, 93-112.
Ranneby, B. and Ekstroem, M. (1997). Maximum spacing estimates based on different metrics. Umea universitet.
Examples
# (1) Fit of a Weibull distribution to serving size data by maximum
# spacing estimation
#
data(groundbeef)
serving <- groundbeef$serving
msedist(serving, "weibull")
#> $estimate
#> shape scale
#> 1.423799 80.894950
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 3.789824
#>
#> $hessian
#> shape scale
#> shape 0.792656647 -0.0043440632
#> scale -0.004344063 0.0002995895
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 59 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -1287.97
#>
#> $phidiv
#> [1] "KL"
#>
#> $power.phidiv
#> NULL
#>
# (2) Fit of an exponential distribution
#
set.seed(123)
x1 <- rexp(1e3)
#the convergence is quick
msedist(x1, "exp", control=list(trace=0, REPORT=1))
#> $estimate
#> rate
#> 0.967625
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 7.516802
#>
#> $hessian
#> rate
#> rate 1.066843
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "BFGS"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 11 2
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -1029.544
#>
#> $phidiv
#> [1] "KL"
#>
#> $power.phidiv
#> NULL
#>