Maximum likelihood fit of univariate distributions
mledist.Rd
Fit of univariate distributions using maximum likelihood for censored or non censored data.
Usage
mledist(data, distr, start = NULL, fix.arg = NULL, optim.method = "default",
lower = -Inf, upper = Inf, custom.optim = NULL, weights = NULL, silent = TRUE,
gradient = NULL, checkstartfix=FALSE, calcvcov=FALSE, ...)
Arguments
- data
A numeric vector for non censored data or a dataframe of two columns respectively named
left
andright
, describing each observed value as an interval for censored data. In that case theleft
column contains eitherNA
for left censored observations, the left bound of the interval for interval censored observations, or the observed value for non-censored observations. Theright
column contains eitherNA
for right censored observations, the right bound of the interval for interval censored observations, or the observed value for non-censored observations.- distr
A character string
"name"
naming a distribution for which the corresponding density functiondname
and the corresponding distribution functionpname
must be classically defined.- start
A named list giving the initial values of parameters of the named distribution or a function of data computing initial values and returning a named list. This argument may be omitted (default) for some distributions for which reasonable starting values are computed (see details).
- fix.arg
An optional named list giving the values of fixed parameters of the named distribution or a function of data computing (fixed) parameter values and returning a named list. Parameters with fixed value are thus NOT estimated by this maximum likelihood procedure.
- optim.method
"default"
(see details) or an optimization method to pass tooptim
.- lower
Left bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- upper
Right bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- custom.optim
a function carrying the MLE optimisation (see details).
- weights
an optional vector of weights to be used in the fitting process. Should be
NULL
or a numeric vector with strictly positive integers (typically the number of occurences of each observation). If non-NULL
, weighted MLE is used, otherwise ordinary MLE.- silent
A logical to remove or show warnings when bootstraping.
- gradient
A function to return the gradient of the log-likelihood for the
"BFGS"
,"CG"
and"L-BFGS-B"
methods. If it isNULL
, a finite-difference approximation will be used, see details.- checkstartfix
A logical to test starting and fixed values. Do not change it.
- calcvcov
A logical indicating if (asymptotic) covariance matrix is required.
- ...
further arguments passed to the
optim
,constrOptim
orcustom.optim
function.
Details
This function is not intended to be called directly but is internally called in
fitdist
and bootdist
when used with the maximum likelihood method
and fitdistcens
and bootdistcens
.
It is assumed that the distr
argument specifies the distribution by the
probability density function and the cumulative distribution function (d, p).
The quantile function and the random generator function (q, r) may be
needed by other function such as mmedist
, qmedist
, mgedist
,
fitdist
,fitdistcens
, bootdistcens
and bootdist
.
For the following named distributions, reasonable starting values will
be computed if start
is omitted (i.e. NULL
) : "norm"
, "lnorm"
,
"exp"
and "pois"
, "cauchy"
, "gamma"
, "logis"
,
"nbinom"
(parametrized by mu and size), "geom"
, "beta"
, "weibull"
from the stats
package; all distributions (except phase-type distributions)
from the actuar
package.
Note that these starting values may not be good enough if the fit is poor.
The function uses a closed-form formula to fit the uniform distribution.
If start
is a list, then it should be a named list with the same names as in
the d,p,q,r functions of the chosen distribution.
If start
is a function of data, then the function should return a named list with the same names as in
the d,p,q,r functions of the chosen distribution.
The mledist
function allows user to set a fixed values for some parameters.
As for start
, if fix.arg
is a list, then it should be a named list with the same names as in
the d,p,q,r functions of the chosen distribution.
If fix.arg
is a function of data, then the function should return a named list with the
same names as in the d,p,q,r functions of the chosen distribution.
When custom.optim=NULL
(the default), maximum likelihood estimations
of the distribution parameters are computed with the R base optim
or constrOptim
.
If no finite bounds (lower=-Inf
and upper=Inf
) are supplied,
optim
is used with the method specified by optim.method
.
Note that optim.method="default"
means optim.method="Nelder-Mead"
for distributions
with at least two parameters and optim.method="BFGS"
for distributions with only one parameter.
If finite bounds are supplied (among lower
and upper
) and gradient != NULL
,
constrOptim
is used.
If finite bounds are supplied (among lower
and upper
) and gradient == NULL
,
constrOptim
is used when optim.method="Nelder-Mead"
;
optim
is used when optim.method="L-BFGS-B"
or "Brent"
;
in other case, an error is raised (same behavior as constrOptim
).
When errors are raised by optim
, it's a good idea to start by adding traces during
the optimization process by adding control=list(trace=1, REPORT=1)
.
If custom.optim
is not NULL
, then the user-supplied function is used
instead of the R base optim
. The custom.optim
must have (at least)
the following arguments
fn
for the function to be optimized, par
for the initialized parameters.
Internally the function to be optimized will also have other arguments,
such as obs
with observations and ddistname
with distribution name for non censored data (Beware of potential conflicts with optional
arguments of custom.optim
). It is assumed that custom.optim
should carry
out a MINIMIZATION.
Finally, it should return at least the following components par
for the estimate,
convergence
for the convergence code, value
for fn(par)
,
hessian
, counts
for the number of calls (function and gradient)
and message
(default to NULL
) for the error message
when custom.optim
raises an error,
see the returned value of optim
.
See examples in fitdist
and fitdistcens
.
Optionally, a vector of weights
can be used in the fitting process.
By default (when weigths=NULL
), ordinary MLE is carried out, otherwise
the specified weights are used to balance the log-likelihood contributions.
It is not yet possible to take into account weights in functions plotdist
,
plotdistcens
, plot.fitdist
, plot.fitdistcens
, cdfcomp
,
cdfcompcens
, denscomp
, ppcomp
, qqcomp
, gofstat
,
descdist
, bootdist
, bootdistcens
and mgedist
.
(developments planned in the future).
NB: if your data values are particularly small or large, a scaling may be needed before the optimization process. See Example (7).
Value
mledist
returns a list with following components,
- estimate
the parameter estimates.
- convergence
an integer code for the convergence of
optim
/constrOptim
defined as below or defined by the user in the user-supplied optimization function.0
indicates successful convergence.1
indicates that the iteration limit ofoptim
has been reached.10
indicates degeneracy of the Nealder-Mead simplex.100
indicates thatoptim
encountered an internal error.- value
the minimal value reached for the criterion to minimize.
- hessian
a symmetric matrix computed by
optim
as an estimate of the Hessian at the solution found or computed in the user-supplied optimization function. It is used infitdist
to estimate standard errors.- optim.function
the name of the optimization function used for maximum likelihood.
- optim.method
when
optim
is used, the name of the algorithm used, the fieldmethod
of thecustom.optim
function otherwise.- fix.arg
the named list giving the values of parameters of the named distribution that must kept fixed rather than estimated by maximum likelihood or
NULL
if there are no such parameters.- fix.arg.fun
the function used to set the value of
fix.arg
orNULL
.- weights
the vector of weigths used in the estimation process or
NULL
.- counts
A two-element integer vector giving the number of calls to the log-likelihood function and its gradient respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to log-likelihood function to compute a finite-difference approximation to the gradient.
counts
is returned byoptim
or the user-supplied function or set toNULL
.- optim.message
A character string giving any additional information returned by the optimizer, or
NULL
. To understand exactly the message, see the source code.- loglik
the log-likelihood value.
- method
"closed formula"
if appropriate otherwiseNULL
.
See also
mmedist
, qmedist
, mgedist
,
fitdist
,fitdistcens
for other estimation methods,
optim
, constrOptim
for optimization routines,
bootdistcens
and bootdist
for bootstrap,
and llplot
for plotting the (log)likelihood.
References
Venables WN and Ripley BD (2002), Modern applied statistics with S. Springer, New York, pp. 435-446, doi:10.1007/978-0-387-21706-2 .
Delignette-Muller ML and Dutang C (2015), fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34, doi:10.18637/jss.v064.i04 .
Examples
# (1) basic fit of a normal distribution with maximum likelihood estimation
#
set.seed(1234)
x1 <- rnorm(n=100)
mledist(x1,"norm")
#> $estimate
#> mean sd
#> -0.1567617 0.9993707
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 1.418309
#>
#> $hessian
#> mean sd
#> mean 1.00126 0.000000
#> sd 0.00000 2.002538
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 43 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -141.8309
#>
#> $vcov
#> NULL
#>
# (2) defining your own distribution functions, here for the Gumbel distribution
# for other distributions, see the CRAN task view dedicated to probability distributions
dgumbel <- function(x,a,b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
mledist(x1,"gumbel",start=list(a=10,b=5))
#> Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, argddistname, hasnodefaultval): 'start' must specify names which are arguments to 'distr'.
# (3) fit of a discrete distribution (Poisson)
#
set.seed(1234)
x2 <- rpois(n=30,lambda = 2)
mledist(x2,"pois")
#> $estimate
#> lambda
#> 1.7
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 1.539478
#>
#> $hessian
#> lambda
#> lambda 0.5882357
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "BFGS"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 4 1
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -46.18434
#>
#> $vcov
#> NULL
#>
# (4) fit a finite-support distribution (beta)
#
set.seed(1234)
x3 <- rbeta(n=100,shape1=5, shape2=10)
mledist(x3,"beta")
#> $estimate
#> shape1 shape2
#> 4.859798 10.918841
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] -0.7833052
#>
#> $hessian
#> shape1 shape2
#> shape1 0.16295311 -0.06542753
#> shape2 -0.06542753 0.03047900
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 47 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] 78.33052
#>
#> $vcov
#> NULL
#>
# (5) fit frequency distributions on USArrests dataset.
#
x4 <- USArrests$Assault
mledist(x4, "pois")
#> $estimate
#> lambda
#> 170.76
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 24.2341
#>
#> $hessian
#> lambda
#> lambda 0.005856175
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "BFGS"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 2 1
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -1211.705
#>
#> $vcov
#> NULL
#>
mledist(x4, "nbinom")
#> $estimate
#> size mu
#> 3.822579 170.747853
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 5.806593
#>
#> $hessian
#> size mu
#> size 3.518616e-02 -3.987921e-07
#> mu -3.987921e-07 1.282598e-04
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 47 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -290.3297
#>
#> $vcov
#> NULL
#>
# (6) fit a continuous distribution (Gumbel) to censored data.
#
data(fluazinam)
log10EC50 <-log10(fluazinam)
# definition of the Gumbel distribution
dgumbel <- function(x,a,b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
pgumbel <- function(q,a,b) exp(-exp((a-q)/b))
qgumbel <- function(p,a,b) a-b*log(-log(p))
mledist(log10EC50,"gumbel",start=list(a=0,b=2),optim.method="Nelder-Mead")
#> Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, argddistname, hasnodefaultval): 'start' must specify names which are arguments to 'distr'.
# (7) scaling problem
# the simulated dataset (below) has particularly small values,
# hence without scaling (10^0),
# the optimization raises an error. The for loop shows how scaling by 10^i
# for i=1,...,6 makes the fitting procedure work correctly.
set.seed(1234)
x2 <- rnorm(100, 1e-4, 2e-4)
for(i in 6:0)
cat(i, try(mledist(x*10^i, "cauchy")$estimate, silent=TRUE), "\n")
#> 6 Error in eval(expr, envir) : object 'x' not found
#>
#> 5 Error in eval(expr, envir) : object 'x' not found
#>
#> 4 Error in eval(expr, envir) : object 'x' not found
#>
#> 3 Error in eval(expr, envir) : object 'x' not found
#>
#> 2 Error in eval(expr, envir) : object 'x' not found
#>
#> 1 Error in eval(expr, envir) : object 'x' not found
#>
#> 0 Error in eval(expr, envir) : object 'x' not found
#>
# (17) small example for the zero-modified geometric distribution
#
dzmgeom <- function(x, p1, p2) p1 * (x == 0) + (1-p1)*dgeom(x-1, p2) #pdf
x2 <- c(2, 4, 0, 40, 4, 21, 0, 0, 0, 2, 5, 0, 0, 13, 2) #simulated dataset
initp1 <- function(x) list(p1=mean(x == 0)) #init as MLE
mledist(x2, "zmgeom", fix.arg=initp1, start=list(p2=1/2))
#> Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, argddistname, hasnodefaultval): 'start' must specify names which are arguments to 'distr'.