Quantile matching fit of univariate distributions
qmedist.Rd
Fit of univariate distribution by matching quantiles for non censored data.
Usage
qmedist(data, distr, probs, start = NULL, fix.arg = NULL, qtype = 7,
optim.method = "default", lower = -Inf, upper = Inf,
custom.optim = NULL, weights = NULL, silent = TRUE, gradient = NULL,
checkstartfix=FALSE, calcvcov=FALSE, ...)
Arguments
- data
A numeric vector for non censored data.
- distr
A character string
"name"
naming a distribution for which the corresponding quantile functionqname
and the corresponding density distributiondname
must be classically defined.- probs
A numeric vector of the probabilities for which the quantile matching is done. The length of this vector must be equal to the number of parameters to estimate.
- start
A named list giving the initial values of parameters of the named distribution or a function of data computing initial values and returning a named list. This argument may be omitted (default) for some distributions for which reasonable starting values are computed (see the 'details' section of
mledist
).- fix.arg
An optional named list giving the values of fixed parameters of the named distribution or a function of data computing (fixed) parameter values and returning a named list. Parameters with fixed value are thus NOT estimated.
- qtype
The quantile type used by the R
quantile
function to compute the empirical quantiles, (default 7 corresponds to the default quantile method in R).- optim.method
"default"
or optimization method to pass tooptim
.- lower
Left bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- upper
Right bounds on the parameters for the
"L-BFGS-B"
method (seeoptim
).- custom.optim
a function carrying the optimization.
- weights
an optional vector of weights to be used in the fitting process. Should be
NULL
or a numeric vector with strictly positive integers (typically the number of occurences of each observation). If non-NULL
, weighted QME is used, otherwise ordinary QME.- silent
A logical to remove or show warnings when bootstraping.
- gradient
A function to return the gradient of the squared difference for the
"BFGS"
,"CG"
and"L-BFGS-B"
methods. If it isNULL
, a finite-difference approximation will be used, see details.- checkstartfix
A logical to test starting and fixed values. Do not change it.
- calcvcov
A logical indicating if (asymptotic) covariance matrix is required. (currently ignored)
- ...
further arguments passed to the
optim
,constrOptim
orcustom.optim
function.
Details
The qmedist
function carries out the quantile matching numerically, by minimization of the
sum of squared differences between observed and theoretical quantiles.
Note that for discrete distribution, the sum of squared differences is a step function and
consequently, the optimum is not unique, see the FAQ.
The optimization process is the same as mledist
, see the 'details' section
of that function.
Optionally, a vector of weights
can be used in the fitting process.
By default (when weigths=NULL
), ordinary QME is carried out, otherwise
the specified weights are used to compute weighted quantiles used in the squared differences.
Weigthed quantiles are computed by wtdquantile
from the Hmisc
package.
It is not yet possible to take into account weighths in functions plotdist
,
plotdistcens
, plot.fitdist
, plot.fitdistcens
, cdfcomp
,
cdfcompcens
, denscomp
, ppcomp
, qqcomp
, gofstat
and descdist
(developments planned in the future).
This function is not intended to be called directly but is internally called in
fitdist
and bootdist
.
Value
qmedist
returns a list with following components,
- estimate
the parameter estimates.
- convergence
an integer code for the convergence of
optim
defined as below or defined by the user in the user-supplied optimization function.0
indicates successful convergence.1
indicates that the iteration limit ofoptim
has been reached.10
indicates degeneracy of the Nealder-Mead simplex.100
indicates thatoptim
encountered an internal error.- value
the minimal value reached for the criterion to minimize.
- hessian
a symmetric matrix computed by
optim
as an estimate of the Hessian at the solution found or computed in the user-supplied optimization function.- optim.function
the name of the optimization function used for maximum likelihood.
- optim.method
when
optim
is used, the name of the algorithm used, the fieldmethod
of thecustom.optim
function otherwise.- fix.arg
the named list giving the values of parameters of the named distribution that must kept fixed rather than estimated by maximum likelihood or
NULL
if there are no such parameters.- fix.arg.fun
the function used to set the value of
fix.arg
orNULL
.- weights
the vector of weigths used in the estimation process or
NULL
.- counts
A two-element integer vector giving the number of calls to the log-likelihood function and its gradient respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to log-likelihood function to compute a finite-difference approximation to the gradient.
counts
is returned byoptim
or the user-supplied function or set toNULL
.- optim.message
A character string giving any additional information returned by the optimizer, or
NULL
. To understand exactly the message, see the source code.- loglik
the log-likelihood value.
- probs
the probability vector on which quantiles are matched.
References
Klugman SA, Panjer HH and Willmot GE (2012), Loss Models: From Data to Decissions, 4th edition. Wiley Series in Statistics for Finance, Business and Economics, p. 253, doi:10.1198/tech.2006.s409 .
Delignette-Muller ML and Dutang C (2015), fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34, doi:10.18637/jss.v064.i04 .
Examples
# (1) basic fit of a normal distribution
#
set.seed(1234)
x1 <- rnorm(n=100)
qmedist(x1, "norm", probs=c(1/3, 2/3))
#> $estimate
#> mean sd
#> -0.3025734 0.8521385
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 2.427759e-10
#>
#> $hessian
#> mean sd
#> mean 2.000000e+00 -2.784663e-14
#> sd -2.784663e-14 3.710520e-01
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 57 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -146.1278
#>
#> $probs
#> [1] 0.3333333 0.6666667
#>
# (2) defining your own distribution functions, here for the Gumbel
# distribution for other distributions, see the CRAN task view dedicated
# to probability distributions
dgumbel <- function(x, a, b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
qgumbel <- function(p, a, b) a - b*log(-log(p))
qmedist(x1, "gumbel", probs=c(1/3, 2/3), start=list(a=10,b=5))
#> Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, argddistname, hasnodefaultval): 'start' must specify names which are arguments to 'distr'.
# (3) fit a discrete distribution (Poisson)
#
set.seed(1234)
x2 <- rpois(n=30,lambda = 2)
qmedist(x2, "pois", probs=1/2)
#> $estimate
#> lambda
#> 1.7
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 0.25
#>
#> $hessian
#> lambda
#> lambda 0
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "BFGS"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 1 1
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -46.18434
#>
#> $probs
#> [1] 0.5
#>
# (4) fit a finite-support distribution (beta)
#
set.seed(1234)
x3 <- rbeta(n=100,shape1=5, shape2=10)
qmedist(x3, "beta", probs=c(1/3, 2/3))
#> $estimate
#> shape1 shape2
#> 5.820826 14.053655
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 3.889731e-12
#>
#> $hessian
#> shape1 shape2
#> shape1 0.002714767 -0.0010963293
#> shape2 -0.001096329 0.0004477195
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 89 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] 76.02016
#>
#> $probs
#> [1] 0.3333333 0.6666667
#>
# (5) fit frequency distributions on USArrests dataset.
#
x4 <- USArrests$Assault
qmedist(x4, "pois", probs=1/2)
#> $estimate
#> lambda
#> 170.76
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 144
#>
#> $hessian
#> lambda
#> lambda 0
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "BFGS"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 1 1
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -1211.705
#>
#> $probs
#> [1] 0.5
#>
qmedist(x4, "nbinom", probs=c(1/3, 2/3))
#> $estimate
#> size mu
#> 2.518966 182.313344
#>
#> $convergence
#> [1] 0
#>
#> $value
#> [1] 0.1111111
#>
#> $hessian
#> size mu
#> size 0 0
#> mu 0 0
#>
#> $optim.function
#> [1] "optim"
#>
#> $optim.method
#> [1] "Nelder-Mead"
#>
#> $fix.arg
#> NULL
#>
#> $fix.arg.fun
#> NULL
#>
#> $weights
#> NULL
#>
#> $counts
#> function gradient
#> 37 NA
#>
#> $optim.message
#> NULL
#>
#> $loglik
#> [1] -292.5969
#>
#> $probs
#> [1] 0.3333333 0.6666667
#>