Skip to contents

Computes goodness-of-fit statistics for parametric distributions fitted to a same censored or non-censored data set.

Usage

gofstat(f, chisqbreaks, meancount, discrete, fitnames=NULL) 
  
# S3 method for class 'gofstat.fitdist'
print(x, ...)
# S3 method for class 'gofstat.fitdistcens'
print(x, ...)

Arguments

f

An object of class "fitdist" (or "fitdistcens" ), output of the function fitdist() (resp. "fitdist()"), or a list of "fitdist" objects, or a list of "fitdistcens" objects.

chisqbreaks

Only usable for non censored data, a numeric vector defining the breaks of the cells used to compute the chi-squared statistic. If omitted, these breaks are automatically computed from the data in order to reach roughly the same number of observations per cell, roughly equal to the argument meancount, or sligthly more if there are some ties.

meancount

Only usable for non censored data, the mean number of observations per cell expected for the definition of the breaks of the cells used to compute the chi-squared statistic. This argument will not be taken into account if the breaks are directly defined in the argument chisqbreaks. If chisqbreaks and meancount are both omitted, meancount is fixed in order to obtain roughly \((4n)^{2/5}\) cells with \(n\) the length of the dataset.

discrete

If TRUE, only the Chi-squared statistic and information criteria are computed. If missing, discrete is passed from the first object of class "fitdist" of the list f. For censored data this argument is ignored, as censored data are considered continuous.

fitnames

A vector defining the names of the fits.

x

An object of class "gofstat.fitdist" or "gofstat.fitdistcens".

...

Further arguments to be passed to generic functions.

Details

For any type of data (censored or not), information criteria are calculated. For non censored data, added Goodness-of-fit statistics are computed as described below.

The Chi-squared statistic is computed using cells defined by the argument chisqbreaks or cells automatically defined from data, in order to reach roughly the same number of observations per cell, roughly equal to the argument meancount, or sligthly more if there are some ties. The choice to define cells from the empirical distribution (data), and not from the theoretical distribution, was done to enable the comparison of Chi-squared values obtained with different distributions fitted on a same data set. If chisqbreaks and meancount are both omitted, meancount is fixed in order to obtain roughly \((4n)^{2/5}\) cells, with \(n\) the length of the data set (Vose, 2000). The Chi-squared statistic is not computed if the program fails to define enough cells due to a too small dataset. When the Chi-squared statistic is computed, and if the degree of freedom (nb of cells - nb of parameters - 1) of the corresponding distribution is strictly positive, the p-value of the Chi-squared test is returned.

For continuous distributions, Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling and statistics are also computed, as defined by Stephens (1986).

An approximate Kolmogorov-Smirnov test is performed by assuming the distribution parameters known. The critical value defined by Stephens (1986) for a completely specified distribution is used to reject or not the distribution at the significance level 0.05. Because of this approximation, the result of the test (decision of rejection of the distribution or not) is returned only for data sets with more than 30 observations. Note that this approximate test may be too conservative.

For data sets with more than 5 observations and for distributions for which the test is described by Stephens (1986) for maximum likelihood estimations ("exp", "cauchy", "gamma" and "weibull"), the Cramer-von Mises and Anderson-darling tests are performed as described by Stephens (1986). Those tests take into account the fact that the parameters are not known but estimated from the data by maximum likelihood. The result is the decision to reject or not the distribution at the significance level 0.05. Those tests are available only for maximum likelihood estimations.

Only recommended statistics are automatically printed, i.e. Cramer-von Mises, Anderson-Darling and Kolmogorov statistics for continuous distributions and Chi-squared statistics for discrete ones ( "binom", "nbinom", "geom", "hyper" and "pois" ).

Results of the tests are not printed but stored in the output of the function.

Value

gofstat() returns an object of class "gofstat.fitdist" or "gofstat.fitdistcens" with following components or a sublist of them (only aic, bic and nbfit for censored data) ,

chisq

a named vector with the Chi-squared statistics or NULL if not computed

chisqbreaks

common breaks used to define cells in the Chi-squared statistic

chisqpvalue

a named vector with the p-values of the Chi-squared statistic or NULL if not computed

chisqdf

a named vector with the degrees of freedom of the Chi-squared distribution or NULL if not computed

chisqtable

a table with observed and theoretical counts used for the Chi-squared calculations

cvm

a named vector of the Cramer-von Mises statistics or "not computed" if not computed

cvmtest

a named vector of the decisions of the Cramer-von Mises test or "not computed" if not computed

ad

a named vector with the Anderson-Darling statistics or "not computed" if not computed

adtest

a named vector with the decisions of the Anderson-Darling test or "not computed" if not computed

ks

a named vector with the Kolmogorov-Smirnov statistic or "not computed" if not computed

kstest

a named vector with the decisions of the Kolmogorov-Smirnov test or "not computed" if not computed

aic

a named vector with the values of the Akaike's Information Criterion.

bic

a named vector with the values of the Bayesian Information Criterion.

discrete

the input argument or the automatic definition by the function from the first object of class "fitdist" of the list in input.

nbfit

Number of fits in argument.

See also

References

Cullen AC and Frey HC (1999), Probabilistic techniques in exposure assessment. Plenum Press, USA, pp. 81-155.

Stephens MA (1986), Tests based on edf statistics. In Goodness-of-fit techniques (D'Agostino RB and Stephens MA, eds), Marcel Dekker, New York, pp. 97-194.

Venables WN and Ripley BD (2002), Modern applied statistics with S. Springer, New York, pp. 435-446, doi:10.1007/978-0-387-21706-2 .

Vose D (2000), Risk analysis, a quantitative guide. John Wiley & Sons Ltd, Chischester, England, pp. 99-143.

Delignette-Muller ML and Dutang C (2015), fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34, doi:10.18637/jss.v064.i04 .

Author

Marie-Laure Delignette-Muller and Christophe Dutang.

Examples


# (1) fit of two distributions to the serving size data
# by maximum likelihood estimation
# and comparison of goodness-of-fit statistics
#

data(groundbeef)
serving <- groundbeef$serving
(fitg <- fitdist(serving, "gamma"))
#> Fitting of the distribution ' gamma ' by maximum likelihood 
#> Parameters:
#>         estimate  Std. Error
#> shape 4.00955898 0.341451641
#> rate  0.05443907 0.004937239
gofstat(fitg)
#> Goodness-of-fit statistics
#>                              1-mle-gamma
#> Kolmogorov-Smirnov statistic   0.1281486
#> Cramer-von Mises statistic     0.6936274
#> Anderson-Darling statistic     3.5672625
#> 
#> Goodness-of-fit criteria
#>                                1-mle-gamma
#> Akaike's Information Criterion    2511.250
#> Bayesian Information Criterion    2518.325
(fitln <- fitdist(serving, "lnorm"))
#> Fitting of the distribution ' lnorm ' by maximum likelihood 
#> Parameters:
#>          estimate Std. Error
#> meanlog 4.1693701 0.03366988
#> sdlog   0.5366095 0.02380783
gofstat(fitln)
#> Goodness-of-fit statistics
#>                              1-mle-lnorm
#> Kolmogorov-Smirnov statistic   0.1493090
#> Cramer-von Mises statistic     0.8277358
#> Anderson-Darling statistic     4.5436542
#> 
#> Goodness-of-fit criteria
#>                                1-mle-lnorm
#> Akaike's Information Criterion    2526.639
#> Bayesian Information Criterion    2533.713

gofstat(list(fitg, fitln))
#> Goodness-of-fit statistics
#>                              1-mle-gamma 2-mle-lnorm
#> Kolmogorov-Smirnov statistic   0.1281486   0.1493090
#> Cramer-von Mises statistic     0.6936274   0.8277358
#> Anderson-Darling statistic     3.5672625   4.5436542
#> 
#> Goodness-of-fit criteria
#>                                1-mle-gamma 2-mle-lnorm
#> Akaike's Information Criterion    2511.250    2526.639
#> Bayesian Information Criterion    2518.325    2533.713


# (2) fit of two discrete distributions to toxocara data
# and comparison of goodness-of-fit statistics
#

data(toxocara)
number <- toxocara$number

fitp <- fitdist(number,"pois")
summary(fitp)
#> Fitting of the distribution ' pois ' by maximum likelihood 
#> Parameters : 
#>        estimate Std. Error
#> lambda 8.679245  0.4046719
#> Loglikelihood:  -507.5334   AIC:  1017.067   BIC:  1019.037 
plot(fitp)


fitnb <- fitdist(number,"nbinom")
summary(fitnb)
#> Fitting of the distribution ' nbinom ' by maximum likelihood 
#> Parameters : 
#>       estimate Std. Error
#> size 0.3971457 0.08289027
#> mu   8.6802520 1.93501005
#> Loglikelihood:  -159.3441   AIC:  322.6882   BIC:  326.6288 
#> Correlation matrix:
#>              size           mu
#> size  1.000000000 -0.000103855
#> mu   -0.000103855  1.000000000
#> 
plot(fitnb)


gofstat(list(fitp, fitnb),fitnames = c("Poisson","negbin"))
#> Chi-squared statistic:  31256.96 7.48606 
#> Degree of freedom of the Chi-squared distribution:  5 4 
#> Chi-squared p-value:  0 0.1123255 
#>    the p-value may be wrong with some theoretical counts < 5  
#> Chi-squared table:
#>       obscounts theo Poisson theo negbin
#> <= 0         14  0.009014207   15.295027
#> <= 1          8  0.078236515    5.808596
#> <= 3          6  1.321767253    6.845015
#> <= 4          6  2.131297825    2.407815
#> <= 9          6 29.827829425    7.835196
#> <= 21         6 19.626223437    8.271110
#> > 21          7  0.005631338    6.537242
#> 
#> Goodness-of-fit criteria
#>                                 Poisson   negbin
#> Akaike's Information Criterion 1017.067 322.6882
#> Bayesian Information Criterion 1019.037 326.6288

# (3) Get Chi-squared results in addition to
#     recommended statistics for continuous distributions
#

set.seed(1234)
x4 <- rweibull(n=1000,shape=2,scale=1)
# fit of the good distribution
f4 <- fitdist(x4,"weibull")
plot(f4)


# fit of a bad distribution
f4b <- fitdist(x4,"cauchy")
plot(f4b)


(g <- gofstat(list(f4,f4b),fitnames=c("Weibull", "Cauchy")))
#> Goodness-of-fit statistics
#>                                 Weibull    Cauchy
#> Kolmogorov-Smirnov statistic 0.02129364  0.114565
#> Cramer-von Mises statistic   0.06261917  1.854791
#> Anderson-Darling statistic   0.43120643 17.929123
#> 
#> Goodness-of-fit criteria
#>                                 Weibull   Cauchy
#> Akaike's Information Criterion 1225.734 1679.028
#> Bayesian Information Criterion 1235.549 1688.843
g$chisq
#>   Weibull    Cauchy 
#>  35.76927 306.99824 
g$chisqdf
#> Weibull  Cauchy 
#>      25      25 
g$chisqpvalue
#>      Weibull       Cauchy 
#> 7.517453e-02 2.364550e-50 
g$chisqtable
#>           obscounts theo Weibull theo Cauchy
#> <= 0.1547        36     27.86449   131.86592
#> <= 0.2381        36     34.87234    16.94381
#> <= 0.2952        36     30.58611    14.10775
#> <= 0.3745        36     50.14472    24.12899
#> <= 0.4323        36     41.16340    21.90706
#> <= 0.4764        36     33.55410    19.88887
#> <= 0.5263        36     39.57636    26.45041
#> <= 0.5771        36     41.67095    32.12597
#> <= 0.6276        36     42.36588    37.99145
#> <= 0.669         36     35.03524    35.92961
#> <= 0.7046        36     30.15737    34.26649
#> <= 0.7447        36     33.82481    41.80511
#> <= 0.7779        36     27.74805    36.41317
#> <= 0.8215        36     35.88169    48.69182
#> <= 0.8582        36     29.58833    40.27626
#> <= 0.9194        36     47.80044    62.45332
#> <= 0.9662        36     35.04387    42.03891
#> <= 1.017         36     36.19084    39.23047
#> <= 1.08          36     42.46698    40.45810
#> <= 1.119         36     24.49715    20.76625
#> <= 1.169         36     29.68482    22.91028
#> <= 1.237         36     36.49226    25.22891
#> <= 1.294         36     27.94301    17.49247
#> <= 1.418         36     51.25543    29.00440
#> <= 1.5           36     27.82405    14.64740
#> <= 1.65          36     38.72011    20.11799
#> <= 1.892         36     37.73807    21.69844
#> > 1.892          28     30.30916    81.16036

# and by defining the breaks
(g <- gofstat(list(f4,f4b), 
chisqbreaks = seq(from = min(x4), to = max(x4), length.out = 10), fitnames=c("Weibull", "Cauchy")))
#> Goodness-of-fit statistics
#>                                 Weibull    Cauchy
#> Kolmogorov-Smirnov statistic 0.02129364  0.114565
#> Cramer-von Mises statistic   0.06261917  1.854791
#> Anderson-Darling statistic   0.43120643 17.929123
#> 
#> Goodness-of-fit criteria
#>                                 Weibull   Cauchy
#> Akaike's Information Criterion 1225.734 1679.028
#> Bayesian Information Criterion 1235.549 1688.843
g$chisq
#>    Weibull     Cauchy 
#>   6.532102 303.031817 
g$chisqdf
#> Weibull  Cauchy 
#>       8       8 
g$chisqpvalue
#>      Weibull       Cauchy 
#> 5.878491e-01 9.318101e-61 
g$chisqtable
#>           obscounts theo Weibull theo Cauchy
#> <= 0.0264         1    0.9414531  111.941831
#> <= 0.3374       123  118.0587149   63.070591
#> <= 0.6483       222  240.3305518  167.852511
#> <= 0.9593       261  252.4491129  318.542341
#> <= 1.27         204  191.1128355  165.083876
#> <= 1.581        111  112.9380271   62.221846
#> <= 1.892         49   53.8525607   30.121634
#> <= 2.203         19   21.0847217   17.463676
#> <= 2.514          6    6.8505892   11.335604
#> <= 2.825          4    1.8602036    7.933114
#> > 2.825           0    0.5212296   44.432977

# (4) fit of two distributions on acute toxicity values 
# of fluazinam (in decimal logarithm) for
# macroinvertebrates and zooplancton
# and comparison of goodness-of-fit statistics
#

data(fluazinam)
log10EC50 <-log10(fluazinam)
(fln <- fitdistcens(log10EC50,"norm"))
#> Fitting of the distribution ' norm ' on censored data by maximum likelihood 
#> Parameters:
#>      estimate
#> mean 2.161449
#> sd   1.167290
plot(fln)

gofstat(fln)
#> 
#> Goodness-of-fit criteria
#>                                1-mle-norm
#> Akaike's Information Criterion   44.82424
#> Bayesian Information Criterion   46.10235
(fll <- fitdistcens(log10EC50,"logis"))
#> Fitting of the distribution ' logis ' on censored data by maximum likelihood 
#> Parameters:
#>           estimate
#> location 2.1518291
#> scale    0.6910423
plot(fll)

gofstat(fll)
#> 
#> Goodness-of-fit criteria
#>                                1-mle-logis
#> Akaike's Information Criterion    45.10781
#> Bayesian Information Criterion    46.38593

gofstat(list(fll, fln), fitnames = c("loglogistic", "lognormal"))
#> 
#> Goodness-of-fit criteria
#>                                loglogistic lognormal
#> Akaike's Information Criterion    45.10781  44.82424
#> Bayesian Information Criterion    46.38593  46.10235