Skip to contents

Provides a plot of the repartition of dose-response trends per group of items.

Usage

trendplot(extendedres, group, facetby, ncol4faceting, add.color = TRUE)

Arguments

extendedres

the dataframe of results provided by drcfit (fitres) or bmdcalc (res) or a subset of this data frame (selected lines). This dataframe should be extended with additional columns coming for the group (for example from the functional annotation of items) and/or for another level (for example the molecular level), and some lines can be replicated if their corresponding item has more than one annotation. This extended dataframe must at least contain as results of the dose-response modelling the column giving the trend (trend).

group

the name of the column of extendedres coding for the groups on which we want to see the repartition of dose-response trends. This column should be a factor ordered as you want the groups to appear in the plot from bottom up.

facetby

optional argument naming the column of extendedres chosen to split the plot in facets using ggplot2::facet_wrap (no split if omitted).

ncol4faceting

number of columns for faceting.

add.color

if TRUE a color is added coding for the trend.

Value

a ggplot object.

See also

Author

Marie-Laure Delignette-Muller

Examples


# (1)

# An example from the paper published by Larras et al. 2020
# in Journal of Hazardous Materials
# https://doi.org/10.1016/j.jhazmat.2020.122727

# the dataframe with metabolomic results 
resfilename <- system.file("extdata", "triclosanSVmetabres.txt", package="DRomics")
res <- read.table(resfilename, header = TRUE, stringsAsFactors = TRUE)
str(res)
#> 'data.frame':	31 obs. of  27 variables:
#>  $ id              : Factor w/ 31 levels "NAP47_51","NAP_2",..: 2 3 4 5 6 7 8 9 10 11 ...
#>  $ irow            : int  2 21 28 34 38 47 49 51 53 67 ...
#>  $ adjpvalue       : num  6.23e-05 1.11e-05 1.03e-05 1.89e-03 4.16e-03 ...
#>  $ model           : Factor w/ 4 levels "Gauss-probit",..: 2 3 3 2 2 4 2 2 3 3 ...
#>  $ nbpar           : int  3 2 2 3 3 5 3 3 2 2 ...
#>  $ b               : num  0.4598 -0.0595 -0.0451 0.6011 0.6721 ...
#>  $ c               : num  NA NA NA NA NA ...
#>  $ d               : num  5.94 5.39 7.86 6.86 6.21 ...
#>  $ e               : num  -1.648 NA NA -0.321 -0.323 ...
#>  $ f               : num  NA NA NA NA NA ...
#>  $ SDres           : num  0.126 0.0793 0.052 0.2338 0.2897 ...
#>  $ typology        : Factor w/ 10 levels "E.dec.concave",..: 2 7 7 2 2 9 2 2 7 7 ...
#>  $ trend           : Factor w/ 4 levels "U","bell","dec",..: 3 3 3 3 3 1 3 3 3 3 ...
#>  $ y0              : num  5.94 5.39 7.86 6.86 6.21 ...
#>  $ yrange          : num  0.456 0.461 0.35 0.601 0.672 ...
#>  $ maxychange      : num  0.456 0.461 0.35 0.601 0.672 ...
#>  $ xextrem         : num  NA NA NA NA NA ...
#>  $ yextrem         : num  NA NA NA NA NA ...
#>  $ BMD.zSD         : num  0.528 1.333 1.154 0.158 0.182 ...
#>  $ BMR.zSD         : num  5.82 5.31 7.81 6.62 5.92 ...
#>  $ BMD.xfold       : num  NA NA NA NA 0.832 ...
#>  $ BMR.xfold       : num  5.35 4.85 7.07 6.17 5.59 ...
#>  $ BMD.zSD.lower   : num  0.2001 0.8534 0.7519 0.0554 0.081 ...
#>  $ BMD.zSD.upper   : num  1.11 1.746 1.465 0.68 0.794 ...
#>  $ BMD.xfold.lower : num  Inf 7.611 Inf 0.561 0.329 ...
#>  $ BMD.xfold.upper : num  Inf Inf Inf Inf Inf ...
#>  $ nboot.successful: int  957 1000 1000 648 620 872 909 565 1000 1000 ...

# the dataframe with annotation of each item identified in the previous file
# each item may have more than one annotation (-> more than one line)
annotfilename <- system.file("extdata", "triclosanSVmetabannot.txt", package="DRomics")
annot <- read.table(annotfilename, header = TRUE, stringsAsFactors = TRUE)
str(annot)
#> 'data.frame':	84 obs. of  2 variables:
#>  $ metab.code: Factor w/ 31 levels "NAP47_51","NAP_2",..: 2 3 4 4 4 4 5 6 7 8 ...
#>  $ path_class: Factor w/ 9 levels "Amino acid metabolism",..: 5 3 3 2 6 8 5 5 5 5 ...

# Merging of both previous dataframes
# in order to obtain an extenderes dataframe
extendedres <- merge(x = res, y = annot, by.x = "id", by.y = "metab.code")
head(extendedres)
#>         id irow    adjpvalue       model nbpar           b  c        d
#> 1 NAP47_51   46 7.158246e-04      linear     2 -0.05600559 NA 7.343571
#> 2    NAP_2    2 6.232579e-05 exponential     3  0.45981242 NA 5.941896
#> 3   NAP_23   21 1.106958e-05      linear     2 -0.05946618 NA 5.387252
#> 4   NAP_30   28 1.028343e-05      linear     2 -0.04507832 NA 7.859109
#> 5   NAP_30   28 1.028343e-05      linear     2 -0.04507832 NA 7.859109
#> 6   NAP_30   28 1.028343e-05      linear     2 -0.04507832 NA 7.859109
#>           e  f      SDres     typology trend       y0    yrange maxychange
#> 1        NA NA 0.12454183        L.dec   dec 7.343571 0.4346034  0.4346034
#> 2 -1.647958 NA 0.12604568 E.dec.convex   dec 5.941896 0.4556672  0.4556672
#> 3        NA NA 0.07929266        L.dec   dec 5.387252 0.4614576  0.4614576
#> 4        NA NA 0.05203245        L.dec   dec 7.859109 0.3498078  0.3498078
#> 5        NA NA 0.05203245        L.dec   dec 7.859109 0.3498078  0.3498078
#> 6        NA NA 0.05203245        L.dec   dec 7.859109 0.3498078  0.3498078
#>   xextrem yextrem   BMD.zSD  BMR.zSD BMD.xfold BMR.xfold BMD.zSD.lower
#> 1      NA      NA 2.2237393 7.219029        NA  6.609214     0.9785095
#> 2      NA      NA 0.5279668 5.815850        NA  5.347706     0.2000881
#> 3      NA      NA 1.3334076 5.307960        NA  4.848527     0.8533711
#> 4      NA      NA 1.1542677 7.807077        NA  7.073198     0.7518588
#> 5      NA      NA 1.1542677 7.807077        NA  7.073198     0.7518588
#> 6      NA      NA 1.1542677 7.807077        NA  7.073198     0.7518588
#>   BMD.zSD.upper BMD.xfold.lower BMD.xfold.upper nboot.successful
#> 1      4.068699             Inf             Inf             1000
#> 2      1.109559             Inf             Inf              957
#> 3      1.746010        7.610936             Inf             1000
#> 4      1.464998             Inf             Inf             1000
#> 5      1.464998             Inf             Inf             1000
#> 6      1.464998             Inf             Inf             1000
#>                                    path_class
#> 1                            Lipid metabolism
#> 2                            Lipid metabolism
#> 3                     Carbohydrate metabolism
#> 4                     Carbohydrate metabolism
#> 5 Biosynthesis of other secondary metabolites
#> 6                          Membrane transport


# (1.a) Trendplot by pathway
trendplot(extendedres, group = "path_class") 


# \donttest{

# (1.b) Trendplot by pathway without color
trendplot(extendedres, group = "path_class", add.color = FALSE) 


# (1.c) Reordering of the groups before plotting
extendedres$path_class <- factor(extendedres$path_class, 
                levels = sort(levels(extendedres$path_class), decreasing = TRUE))
trendplot(extendedres, group = "path_class", add.color = FALSE) 


# (2) 
# An example with two molecular levels
#
### Rename metabolomic results
metabextendedres <- extendedres

# Import the dataframe with transcriptomic results 
contigresfilename <- system.file("extdata", "triclosanSVcontigres.txt", package = "DRomics")
contigres <- read.table(contigresfilename, header = TRUE, stringsAsFactors = TRUE)
str(contigres)
#> 'data.frame':	447 obs. of  27 variables:
#>  $ id              : Factor w/ 447 levels "c00134","c00276",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ irow            : int  2802 39331 41217 52577 52590 53968 54508 57776 58705 60306 ...
#>  $ adjpvalue       : num  2.76e-04 9.40e-07 2.89e-06 1.88e-03 1.83e-03 ...
#>  $ model           : Factor w/ 4 levels "Gauss-probit",..: 3 2 2 2 2 2 3 2 1 3 ...
#>  $ nbpar           : int  2 3 3 3 3 3 2 3 4 2 ...
#>  $ b               : num  -0.21794 1.49944 1.40817 0.00181 1.48605 ...
#>  $ c               : num  NA NA NA NA NA ...
#>  $ d               : num  10.9 12.4 12.4 16.4 15.3 ...
#>  $ e               : num  NA -2.2 -2.41 1.15 -2.31 ...
#>  $ f               : num  NA NA NA NA NA ...
#>  $ SDres           : num  0.417 0.287 0.281 0.145 0.523 ...
#>  $ typology        : Factor w/ 10 levels "E.dec.concave",..: 7 2 2 4 2 2 7 1 5 8 ...
#>  $ trend           : Factor w/ 4 levels "U","bell","dec",..: 3 3 3 4 3 3 3 3 1 4 ...
#>  $ y0              : num  10.9 12.4 12.4 16.4 15.3 ...
#>  $ yrange          : num  1.445 1.426 1.319 0.567 1.402 ...
#>  $ maxychange      : num  1.445 1.426 1.319 0.567 1.402 ...
#>  $ xextrem         : num  NA NA NA NA NA ...
#>  $ yextrem         : num  NA NA NA NA NA ...
#>  $ BMD.zSD         : num  1.913 0.467 0.536 5.073 1.004 ...
#>  $ BMR.zSD         : num  10.4 12.1 12.1 16.6 14.8 ...
#>  $ BMD.xfold       : num  4.98 3.88 5.13 NA NA ...
#>  $ BMR.xfold       : num  9.77 11.19 11.17 18.05 13.8 ...
#>  $ BMD.zSD.lower   : num  1.255 0.243 0.282 2.65 0.388 ...
#>  $ BMD.zSD.upper   : num  2.759 0.825 0.925 5.573 2.355 ...
#>  $ BMD.xfold.lower : num  3.94 2.32 2.79 Inf 3.06 ...
#>  $ BMD.xfold.upper : num  Inf Inf Inf Inf Inf ...
#>  $ nboot.successful: int  500 497 495 332 466 469 500 321 260 500 ...

# Import the dataframe with functional annotation (or any other descriptor/category 
# you want to use, here KEGG pathway classes) 
contigannotfilename <- system.file("extdata", "triclosanSVcontigannot.txt", package = "DRomics")
contigannot <- read.table(contigannotfilename, header = TRUE, stringsAsFactors = TRUE)
str(contigannot)
#> 'data.frame':	562 obs. of  2 variables:
#>  $ contig    : Factor w/ 447 levels "c00134","c00276",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ path_class: Factor w/ 17 levels "Amino acid metabolism",..: 3 11 11 15 8 4 3 4 8 2 ...

# Merging of both previous dataframes   
contigextendedres <- merge(x = contigres, y = contigannot, by.x = "id", by.y = "contig")
# to see the structure of this dataframe
str(contigextendedres)
#> 'data.frame':	562 obs. of  28 variables:
#>  $ id              : Factor w/ 447 levels "c00134","c00276",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ irow            : int  2802 39331 41217 52577 52590 53968 54508 57776 58705 60306 ...
#>  $ adjpvalue       : num  2.76e-04 9.40e-07 2.89e-06 1.88e-03 1.83e-03 ...
#>  $ model           : Factor w/ 4 levels "Gauss-probit",..: 3 2 2 2 2 2 3 2 1 3 ...
#>  $ nbpar           : int  2 3 3 3 3 3 2 3 4 2 ...
#>  $ b               : num  -0.21794 1.49944 1.40817 0.00181 1.48605 ...
#>  $ c               : num  NA NA NA NA NA ...
#>  $ d               : num  10.9 12.4 12.4 16.4 15.3 ...
#>  $ e               : num  NA -2.2 -2.41 1.15 -2.31 ...
#>  $ f               : num  NA NA NA NA NA ...
#>  $ SDres           : num  0.417 0.287 0.281 0.145 0.523 ...
#>  $ typology        : Factor w/ 10 levels "E.dec.concave",..: 7 2 2 4 2 2 7 1 5 8 ...
#>  $ trend           : Factor w/ 4 levels "U","bell","dec",..: 3 3 3 4 3 3 3 3 1 4 ...
#>  $ y0              : num  10.9 12.4 12.4 16.4 15.3 ...
#>  $ yrange          : num  1.445 1.426 1.319 0.567 1.402 ...
#>  $ maxychange      : num  1.445 1.426 1.319 0.567 1.402 ...
#>  $ xextrem         : num  NA NA NA NA NA ...
#>  $ yextrem         : num  NA NA NA NA NA ...
#>  $ BMD.zSD         : num  1.913 0.467 0.536 5.073 1.004 ...
#>  $ BMR.zSD         : num  10.4 12.1 12.1 16.6 14.8 ...
#>  $ BMD.xfold       : num  4.98 3.88 5.13 NA NA ...
#>  $ BMR.xfold       : num  9.77 11.19 11.17 18.05 13.8 ...
#>  $ BMD.zSD.lower   : num  1.255 0.243 0.282 2.65 0.388 ...
#>  $ BMD.zSD.upper   : num  2.759 0.825 0.925 5.573 2.355 ...
#>  $ BMD.xfold.lower : num  3.94 2.32 2.79 Inf 3.06 ...
#>  $ BMD.xfold.upper : num  Inf Inf Inf Inf Inf ...
#>  $ nboot.successful: int  500 497 495 332 466 469 500 321 260 500 ...
#>  $ path_class      : Factor w/ 17 levels "Amino acid metabolism",..: 3 11 11 15 8 4 3 4 8 2 ...

### Merge metabolomic and transcriptomic results
extendedres <- rbind(metabextendedres, contigextendedres)
extendedres$molecular.level <- factor(c(rep("metabolites", nrow(metabextendedres)),
                              rep("contigs", nrow(contigextendedres))))
str(extendedres)
#> 'data.frame':	646 obs. of  29 variables:
#>  $ id              : Factor w/ 478 levels "NAP47_51","NAP_2",..: 1 2 3 4 4 4 4 5 6 7 ...
#>  $ irow            : int  46 2 21 28 28 28 28 34 38 47 ...
#>  $ adjpvalue       : num  7.16e-04 6.23e-05 1.11e-05 1.03e-05 1.03e-05 ...
#>  $ model           : Factor w/ 4 levels "Gauss-probit",..: 3 2 3 3 3 3 3 2 2 4 ...
#>  $ nbpar           : int  2 3 2 2 2 2 2 3 3 5 ...
#>  $ b               : num  -0.056 0.4598 -0.0595 -0.0451 -0.0451 ...
#>  $ c               : num  NA NA NA NA NA ...
#>  $ d               : num  7.34 5.94 5.39 7.86 7.86 ...
#>  $ e               : num  NA -1.65 NA NA NA ...
#>  $ f               : num  NA NA NA NA NA ...
#>  $ SDres           : num  0.1245 0.126 0.0793 0.052 0.052 ...
#>  $ typology        : Factor w/ 10 levels "E.dec.concave",..: 7 2 7 7 7 7 7 2 2 9 ...
#>  $ trend           : Factor w/ 4 levels "U","bell","dec",..: 3 3 3 3 3 3 3 3 3 1 ...
#>  $ y0              : num  7.34 5.94 5.39 7.86 7.86 ...
#>  $ yrange          : num  0.435 0.456 0.461 0.35 0.35 ...
#>  $ maxychange      : num  0.435 0.456 0.461 0.35 0.35 ...
#>  $ xextrem         : num  NA NA NA NA NA ...
#>  $ yextrem         : num  NA NA NA NA NA ...
#>  $ BMD.zSD         : num  2.224 0.528 1.333 1.154 1.154 ...
#>  $ BMR.zSD         : num  7.22 5.82 5.31 7.81 7.81 ...
#>  $ BMD.xfold       : num  NA NA NA NA NA ...
#>  $ BMR.xfold       : num  6.61 5.35 4.85 7.07 7.07 ...
#>  $ BMD.zSD.lower   : num  0.979 0.2 0.853 0.752 0.752 ...
#>  $ BMD.zSD.upper   : num  4.07 1.11 1.75 1.46 1.46 ...
#>  $ BMD.xfold.lower : num  Inf Inf 7.61 Inf Inf ...
#>  $ BMD.xfold.upper : num  Inf Inf Inf Inf Inf ...
#>  $ nboot.successful: int  1000 957 1000 1000 1000 1000 1000 648 620 872 ...
#>  $ path_class      : Factor w/ 18 levels "Translation",..: 5 5 7 7 8 4 2 5 5 5 ...
#>  $ molecular.level : Factor w/ 2 levels "contigs","metabolites": 2 2 2 2 2 2 2 2 2 2 ...

### trend plot of both molecular levels
# optional inverse alphabetic ordering of groups for the plot
extendedres$path_class <- factor(extendedres$path_class, 
                levels = sort(levels(extendedres$path_class), decreasing = TRUE))
trendplot(extendedres, group = "path_class", facetby = "molecular.level") 



# }